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ABSTRACT

We extend a multi-level preamnditioned soluion methal for a linear discantinuous dis-
cretization of the P, equdions in two—dmensiaal Cartesan geametry to three-dimengonal, un-
struduredtetratedralmesha. A diffusion synthetic accekration (DSA) methal basel onthee R
equdionsis appliedto linear discontinuous$ trangort souceiteraions on tetratedralmeshes It
is afully congstentmethal becawsethe P, equatiors andthetransportequationarebothdiscretized
with a linear discontinuousfinite elementbasis. Fourier analysesand computaional resuts show
the DSA schemeis stableand very effective. We compae the fully congstert schene to othe
“partially consstent DSA methals.

1 INTRODUCTION

An effective DSA schameis oftenneassaryfor the efficient soluion of {trangort soure
iteration. It is well knowntha the discrdization of the diffusion equaton used in a DSA scheme
hasto be “consisten” with the transportequation disaretizaion in orde for it to be effective and
robust over awide range of problems(Alcouffe, 1977, Larsen 1982).

DSA for linear discatinuousfinite elemen discrdizations of the § equdions requres a
linear discantinuousfinite elemen discrdization of the R equaions. This canbe doneby usinga
linear finite elementbasisto representhe P soluion combiredwith away to introducediscatinu-
ities into the discrdization. Becaug it is a consstentdisaetizaion the correspondng DSA scteme
will be effective andrelatively few source iterationswill be neead. However, whensolving large
3D probemson unsructuredgrids, the P, linear systan canbe quite large. Iterative solution of this
system cancorverge slowly, while dired methodsareimpradical.

To addressthis difficulty, DSA schems have beendeveloped thatare only partally con
sistent with the undelying discatinuaous finite elemen disaetizaions of the trangort equdion
(Wareirg, 1991, Adams, 1992, Morel, 1993, Wareing 2001) SuchDSA schemesan be very
efficient. But they canalso be although lesseffective thana consstent methodin just the kinds
probdemsfor which DSA is mostneeadkd. A partidly corsistert DSA schemecould even possbly
cau® the trangort iteraions to becomeundable. In particular, we will shawv thata scheme pre-
viously found to be stalie in 1D and 2D Cartesia geomdries (Adams,1992)is unstableon 3D
unstucturedmeshes



In contrast, our appioachis to iteratively solve the linear discontinuous R equationsas
efficiently as possble with a robust precanditioner.  The two—level precanditioner presentedby
Warsa,et al. (2000 wasshavn to be very effective in two—dmensiaal Cartesiangeomety. In
this work we extend that precmnditionedsolution techique to 3D unstucturel tetratedralmeshes.
The methodis then implemened asa fully consstentDSA schemefor a linear discantinuous §
trangort code(Wareirg, 1996).

Theremainder of the paperis orgarized asfollows. In the next secton we descibe how we
discretizeandsolve the three-dimersional discantinuous R equationswith our two—level premn-
ditioner. Thethird secton descibesa Fourieranalysisthatcanpredct thespedral radius of aDSA
methodon 3D tetrahedrd meshes.In the fourth secton we compae the Fourier anaysis predic
tionsto spectal radius measurenentsfrom animplemenation code. A modeately sizedexample
problemis usedto measurehe compuationd effort of theaccderated & solution methals. All the
resuts compae the fully corsistert methodto other partially consistert DSA schems. The pape
condudeswith afew summaryremarks.

2 DISCONTINUOUSP1EQUATIONSON TETRAHEDRAL MESHES

In this work, we derive a discretizaion of the P, equationsto be usedasa fully corsistern
DSA methodfor discantinuousfinite elemern discrdizations(DFEM) of the & transportequdion.

In this secton we descibe thedisocontinuousdiscretizaion of the R equationsontetratedra.
Thatis followed by a desciption of the two—lewel preconditioning approachusing a coninuous
discretizaion of the diffusion equdion. The sectin concludes with a brief discussian of the DSA
algorithm.

2.1 TheDiscretized Equations

We statt with the stealy—state P, sydemof equaions. In three-dimensonal geomety they
are

V- 300) + o) 2(x) = Qolr) (12)
SV + o) I(r) = Qulr) (1b)

The ustal particle transprt notaion is used ®(r) representsthe scalarflux (zerah momentof
the anguhr flux), J(r) representghe current (first momentof the angdar flux). The sourceterms
Qo(r) andQ; (r) arethezerah andfirst anguar momentsof aninhomogeneussouice,a materid
property. Thefirst expressionis the balarce equaion. Thesecamdis avecta equationwe will refer
to asthefirst momentequaton(s). They will condstenty bewrittenin this order.

Bounday condtions for the P, equdions are specifiedby sepaating the flow of particles
through a surface into inwardly andoutwardly directed flows using partal currents. Theinwardly
dirededflow (partial current) of partidesthroudh a surfacelocatedatr; canbe expressedas

in = A6 rs, O :1 r —lﬁ- r
T = [ (D) V) = G0 5030 (22)
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Similarly, anoutwardy direcedflow is givenby

—
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N

Assumeno extemal anguar flux of paricles entas through the exterral boundary surfaceI" C €,
thatis, T(rs, 2) = 0 for ry € T and (7 - Q) < 0. Thenthe vacwm Marshé boundary condtions
relate thescahrflux andcurrentsonthe bourdarythrough Eq. 2aby settirg J"(r;) = 0 forrs € T'.
Reflectionboundarycondtionsarespecfied by seting J" (rs) = Jo%(r;).

We usea linea finite elementbask on a tetratedralcell 7, € €. A local ordeing of the
facesandvertices of a cell is estdlished suchthat the face: is oppcsite the vertex 5. Thelinear
basisfunctionsfunctionsu; andw;, 1 = 1, ..., 4, aredefinedby thelinear baryentric coordnates
ona“maste” tetrehedran. Thereis a unique mappirg betwee the actual coordinatesof the mesh
verticesandthe local baryentric coordnates. More on the useof barycentric coordinatescanbe
found in (Zienkiewicz, 1994). Theirusesimplifiesthederivationandis easily genealizedto higher
order elementg{Wareing, 2001).

We canconstuct a DFEM for the P, equdions asfollows. The boundary of a tetrehedrd
cell k is 01y, conssting of eachof thefour facesa;, j = 1, 4, oppositethefour resgective vertices.
With thetrial functionsw;, andwy,, thedisaeteproblemis to solve

/ (n : Jg) updS — [ Iy VupdV + oqp / SpupndV = | QoundV  (3a)
Ty, Ty Ty T,

1 . 1

— CI)h (nwh) dS— - (I‘h (th) dV—*—O’t,k Jh-thV: Q1 th‘/, (3b)

for @, andJ},, which arelinear appraximations, expandedin termsof the basisfunctions; and
w;, to the scalarflux and currenton the elementZ;.. Note thatwe have usel the divergencethe-
oremto integratetermsinvolving gradents This is neassaryfor introducing the discantinuous
appoximation.

For our linear trial spae there arefour vectortrial functions w, andfour scala trial func-
tions uy. Equatons 3 arewritten at eachvertex of every cell andEq. 3b is written sepaately for
eachof thez, y, andz compamentsatthefour cell vertices. Theresultis sixteen equdionsin sixteen
unknowns for eachcell in the mesh. Becausehe basisfunctions are unity at their respective ver
ticesandarezeroatthe other three vertices, the unknownson a cell arethevaluesof flux andthree
current comporentsat thefour cell vertices,thatis, ;,7 = 1,4 andJ?, J?, andJ?,i = 1,4. These
values arediscantinuous, thatis, they aresepratel definad on eachcell asthe limiting values of
®(r) andJ(r) asr — v; from within thecell.

Theintegralsover the facesof thetetratedralcells, 87}, contain the quantities ® andJ?,
indicating that they are “boundary’ terms. They canbe uniquely definedin termsof the particle
flows through the surfacebetweenwo adja@nt cells using disaeteversians of the partial currents
in Eqs.2aand2b.

Theresut of the integrationsover the cell bourdariesin Egs. 3 involve quantities of the
form a;®? and (a; - J?) atvertex i. The“areavecta” is definedasa; = 7a; for aface;j whose
areais a; with outward normal7;. We can “upwind” and account for bourdary conditions or
intemal facesusingdiscreteversiors of the partal curreris asfoll ows. First,adding andsubtacting
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the continuouspartid currerts we canwrite

o =2 (Jo + ") (4a)
(- Jp) = g0t = 7n. (4b)

Usingtheserelationshpsfor vertex : andeithersettng & = 0 if afacej is intemal or onavacwm
bourdaryor setting §; = 1 if afacej is onareflectve bourdary, the neessaryquantties are

a; ¥ = 2a; (J;j;t [L+&]+ [ - g]) (5a)
(a- ) = lay| (7t = Ti) [ - &1, (5b)

Theupwinddefinitionsarecompldedby defining the partial currentsin thes lastexpressionsflow-
ing throughface j atthevertex s as

. 1 1
J;g = Z@fwt— §ﬁj -wat (5¢)
1 1,
Jjof,;t = 1 P, + Enj -Js, (5d)

where“ext” denoesexterior quantties, thatis, thevaluesin the adjecentcell thatshaesface j with
cell k and“across”thefacefrom vertex ;. We note thatthereareotherpossible waysto definethe
upwindng although we will notdiscussthatfurther here.

If we orderthe unknowns on the meshfirst by the current vecta for eachvertex on every
cell, followed by the scalarflux for eachvertex on every cell, we canwrite the linear sygemin the
(2 x 2) block form

Ay A [I] _[f

wherethe submatices A; and A, areSPD.Thesygemcanalsobewritten in the symmetricform
3A; Ay ] [J] [3f]

= . 7

|:Ag —A,] |® ) ( )

Finally, we notethatit is possible to find a discantinuous disaretizaion for the scala flux alone
if we compue the Schurcomplemety S, of the (2 x 2) block linear systens above. The Schur
complamentis formed by block Gausfan elimination of the row block (which canbe viewedas
eliminating the currerts in favor of the scala fluxes). Thecorrespondng SPDIlinear systen is

SP = [Aq + A§(3A:) " Ag]® = g + [(3Ay) ' A] . 8)
On tetrehedrathis redwed systen involves 1/4 the numberof unknowns of the original full R
system of equatons. This is potertially atremerdoussavingsfor transmrt accderation since only

the scala fluxes are needel for that purpose. Solution of the redwced systen is a topic we are
currently studying.

(4)



2.2 Solution Methods

The discatinuous P, equdions, Eq. 6 or Eq. 7, form an sparse inddfinite linear systam,
Az = b. To beusedaspart of a DSA schene, we mustsolve this sysem efficiently. For large
probems direct methals are infeasiblke, so we useiterative solution techiques to which we can
apply multilevel acceleation methals.

Our solution techngue conssts of a two—level iteration. An outer Krylov—subgaceiter-
ative methdal is usedto solve the discontinuousR equaions. To computea solution efficiently, a
precanditionerM is neeckd that adeqiately alters the spedrum of the matrix A. Loosely speak
ing, the precondtionerwill beeffective if the eigewvaluesof the preconditionedmatrix M A are
clusteredandbourdedaway from the origin (Campbél, 199). In our casewe have alsofoundthat
the corvergerce rate of the oute Krylov iteration improvesif the condtion number measued by
the ratio of the maximumto minimum singular values of M—' A, is smallerthanthat of the orig-
inal system.However, this is only arough indicator of preamnditionereffectivenesgWarsa 2000,
Nachtigal, 1992) The precaditioner first preentedin Warsa,et al. (2000, hasbeenextended
from two—dimersiond Cartesan meshea to three-dimensonal unstuctured tetrahedal meshes A
linear continuousfinite elemen discreization of the diffusion equationis usedto precadition the
oute Krylov iteration. Theinner iteration usedto solve the continuousdiffusion linear sygemis
the secoml level of ourtwo—lewel solution techrique.

This precanditioner was shownto be effective over a wide range of probdemsandis par-
ticularly well—suted to solving probleanswhich are optically thick anddiffusive. This is fortunate
becaisethesehappen to be just the kinds of probemsfor which we would like to solve the R
equdions as part of a trangort accderation algorithm. Use of the cortinuous diffusion equdion
is suggetedby the obsewation that discantinuities in the R solution disgppearand apprachthe
continuous diffusion equdion soluion asthe problem becanesopticdly thick anddiffusive. It is
alsoduein part to the two modelsbeing so closely relaed, a fact we will exploit in deriving our
two-level precondtioner. In two dimensons,the preconditioner scaledwell with problem size but
corvergenceratesof boththeinnerandoute iterationsdegradedfor verythin or very highly skewed
cells

At every iteration, the Krylov solver suppies a residual vector r requestingthat a vecta
z = M~!r bereturnedto the solver. In our case this is compuedimplicitly. Thatis, we “solve”
Mz = r withoutexplicitly forming or invertingamatrix M. Thiswill madecleaerif oneexamines
our two—level appoachasdispayedin Algorithm 1. Thealgorithm conssts of threedistinct stegs,

Algorithm 1 Two—Level Precondioner

z+ 0
s<1r—Az
z<—z+w:&_13
s<r—Az
z4+ 2+ C7ls
s<1r—Az

Z z—i—wi&*ls

giving it the charater of a two—sta@ multigrid V—cycle. The continuous diffusion equdion step,
dended by C~1, residesat the lowestlevel andis precaled and followed by dampel pre—and
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post-smootling iterations, whereA is somesimpleappraimation to A. It is this entire series of
computtions thatis implicitly represenedby the operator M.

The continuousdiffusion operator, derotedby C~! in Algorithm 1, mustbe compued
implicitly aswell. The continuous diffusion equdion is discaetized with unknownson the mesh
vertices. This linear systen is usudly of lower dimenson (RV>, with N, beingthe numberof
verticesin the mesh)thanthatof the discontinuoush equaions (R'Ye , where N, is the numberof
cellsin themesh).The compuationof C~! thereforeconsistsof three steps a projection, a matrix
inversion,and an interpolaton, written symbdically asC™! = QD~!P. Thematrix P projects
from from R'6Ye ontoRM> andthe matrix Q interpolatesbackagain

The projections andinterpolation are alsocompued implicitly. The projections are com-
puted asa soucetermfor eachcell-vertex cenereddiffusion equdion by summinganappiopriaie
combiration of the discontinuousscahr flux andcurrert residualsfrom all the cells surroundng a
vertex. Thisis disaussedn moredetal belov. Theinterpolations simply assigh the sameconinu-
ousdiffusionequdion solufon to all thediscontinuousscala fluxessurrounding a particularvertex;
the currentsareleft unchanged

The matrix D~ representsthe inverseof the continuousdiffusion equaions. The solu-
tion is alsocompued appoximatdy usingpreomnditionedconjugategradent (PCG)iterations and
simplediagonal precanditioning

Thematrix A is eithertheblock—diagonalmatrix extractedfrom thediscontinuousR matrix
on a cell-by—cell basis representd by B, or it is theidertity I. Theformer caseis a block—Jaobi
iteration and the latter is a Richard®n iteraion. In the block-Jacdi iteraion, eachblock is a
(16 x 16) matrix representng the coupling betwea all the unknowns (scahbr fluxesand currents)
on a cell. The block—Ja®bi smoothihg iterations are evaluated by sweepingthrough the mesh
one cell at a time, which could potenially be very efficient in a paralel implementation. The
overall precanditionerwith Richaidsonsmoothing is simpler but less effective than with block—
Jacdi smoothing. In this paperwe cons'deronly;& = B.

Manipuation of the P, equatons leadsto a souce term that representshe “correct” pro-
jection operator. We startby assuming the discortinuous unknownsin R equdions are coninuous
atthevertices. We then write the balarce equationsandmomentequdions (in vecta form) for the
four vertices on somecell k. Theright handside of the B equdionsis setto a “residual’ vecta of
the discontinuousopeiator; referiing to Algorithm 1 thisvecta is s = » — Az, wherez is the up-
datedvecta from thefirst block Jacdi iteration. The four momentequatonsareaddel togetherto
find anexpressionfor the average currert vectoron a cell, noting thatthe areavectorsof a cell sum
to zeroandthatthe outwardly directed areavectas for a facesharedby two cells arethe negaive
of oneanotrer. The expresson for the average current appeas in the four balarce equaionson a
cell. Inseting thatexpressioninto the balanceequaion for vertex j oncell k gives

OakVk o
270t/ng (i_zlazqﬁ,) (2¢J+Z¢z)—sﬂ,k 3Uthk (Z&k) 9

=1
i#]

This is the cortinuous diffusion discretizaion with the right handside beingthe projectionof the
discantinuousresidual vecta s, wheres; . is theresidual in the scahbr flux at vertex j in cell k and
s; k iIstheresdualin thecurrents. Thecontinuous unknownsg,, aregiventheglobal ordering of the
meshvertices. Every meshvertex is sharel by anarbitrary numberof cellsandEq. 9 is compued
for the correspondng local vertex 5 on eachof those cells. The equatons are summedover the

(6)



surraunding cells, ead one contiibuting to the codficients of the continuows diffusion matrix, D,
for the row comrespomling to that global vertex. The projection opeation in an implemeration
follows from this summation
We mustuseGMRESm) if eithe the systan or the precondtioneris not symmetric With

our definition of the projection opeator and the simple interpolation methodwe are using, the
precaditioneris not symmetrc becaiseQ # PT. However, if we wish to useMINRES to solve
the symmetricform of the P, equaions, we canimposesymmetryby definng Q = P andwe can
ensue thatthe preamnditioneris posdtive definite(MINRES requiresthe precanditionerto be SPD)
by scaling the problemby somenormof thelinearsygem.

2.3 Diffusion Synthetic Acceleration

We now preset a brief desciption of the diffusion synthetic accekratediterative trangort
soluion method.

The DFEM discretizaion of the § transmrt equation usesthe samelinear trial functions
up, € Uy asthe Py equatons. We assumenangubr quadratue{flm, wm} whoseweights sumto
unity andconsder only isotropic scatering. For eachquadatureangkf),,,, thetransprt discretiza
tion compuesa discantinuous value of the angdar flux, v, ; ;, eachvertex j on every cell k. At
souiceiteration £, thediscreteform of thetrangort equdion canbewritten as

Tt ' =05S¢" + Qm,  ¢' =D wmily, (10)
m

where@,, is an (isotropic) inhomogen®usdistributed souce. With DSA, the soure iteration is
modifiedasfoll ows:

Pe? = 6, T8¢ + Trl Qun (119
¢Z+1/2 — Z wm,wfr—LFl/Q (1lb)
€l+1/2 = o, XTA71X<¢Z+1/2 o ¢ﬁ> (llC)

¢£+1 — ¢€+1/2 +€Z+1/2' (11d)

The operator A~! representsthe solution to the P, equaions. Note that the scala flux trangort
residuals only contribute a sourceto the balarce equatons of the R equations (the quantity ¢ in
Eqgs.6 and7). Source for the momentequdionsaresetto zero(f = 0 in Egs.6 and7). Similarly,
the transport scahbr fluxesare correded only by the B equaton solution for the scala fluxes. The
matrix X symbolzesthese'projections” and“interpolations”.

3 Fourier Analysis

In this sectbn we presenta three—dimersiond Fourier analysis on tetratedraof the accet
eratel Sy transportsourceiteration.

The undetying Fourier ansdz is madeon a three-dimensonal Cartesiangrid, the bastc
elemen of which is a box of dimenson Az x Ay x Az. Theboxis dividedinto somenumberof

()



tetrehedrawhoseedges mustline up whenthe bast elemerts are“translated in orderto “tile” the
Cartesangrid with tetraledra. The minimum numbe of tetrehedrathat satsfy this requrementis
six. This basc elementis illustratedin Fig. 1.

Az

Ax

Ay

Figurel: The bast elementfor the Fourier analysis dividedinto six tetrahedn of equd

volume.
Thetetratedralcellsonthe basicelementarenumbeedfromk =1, ..., 6, eachof thefour
verticesarelocdly orderal within eachtetratedronfrom 5 = 1,...,4, andthe four quarities at

eachvertex in every cell in the basicelemen areordeaedasi = 4(k — 1) + j. A Fourieransatas

madefor theerrorsin the solution onthe basicelement.Thisassimesanexporentialrepresentaion
for the solution of theform

D (r) = diel(Ar)
Tu(r) = Jrel(r)
Th(w) = Jrel )
Tix(r) = Jre'(2)

whereA = [Az, Ay, AZ]T is the vector of Fourier wave numbes. The termsfor cellsin the bast
elemen that have faceson the boundary andwhich exist outside the basicelement(the “extemal”
terms®¢** and J¢*! in Eqgs.5) aredefined in termsof quartities interior to the bast elemert by
“translating” theappra@riateinterior quartities by thewidth of thebasc elementhroughtheFourier
ansaz.

Using the symbdic algebra proglam MAPLE, Egs. 3, together with the upwinding equa
tions, Eqs.5, arewritten for all cells andall verticeson the basc elemen. The Fourier ansaz is
insetted into theseequations resuting in a (96 x 96) linear system. The matrix for the systemof
equaions,demtedbyﬁ, is compuedin termsof the bast elemen thicknessAz, Ay, and Az, the
Fourier wave numbers);, A, and )., and corstant materid propeties ¢ (scatering ratio) and
(totd crosssecton), using expressiors geneatedsymboically by MAPLE.

For every discrde ordinatem, a Fourieransdz of the form

P ik (T) = P i€ i(Rx)
(8)



is alsomadefor the errars in the anguar fluxes of the transprt equaton. Using the sameglobd
ordering for the six tetraheda in a basc elemen asusedin the R equaions, Eq. 10 leadsto the
(24 x 24) sygem

F=) w,T,'S. (12)
m

This matrix is againcomputed in termsof the Fourier wave numbe, the basc elementthickness,
andthe materia propeties, usingsymbolic expressionsfrom MAPLE. Notethatthe spedral radius
of theunacceleatedsoure iteraions, the maximumeigervalueofF, is equal to ¢ = o,/ oy.

Now, the DSA algarithm in Egs.11aleadsto the (24 x 24) matrix (I is theidertity)

G= [ﬁ +o, XTATIX(F - I)], (13)

whosemaximumeigeawalue is the spedral radius of the accderatedtrangort solution. The matrix
X is adisaete“projection” matrix of dimersions(96 x 24).

__ TheFourier matrix G is compued with MAPLE by combining symbolc expressionsfor
A, F, andX. It is evaluaed for fixed paranetersand maximizedover all frequencis using a
NeldeMead simplex algoiithm with quadatic surface fitting nearsuspctedmaxima. We found
this algorithm to be essetial in searding for the maximumover the three-dimensonal spae of
wave numlers.

4 NUMERICAL RESULTS

In this secton we will investigatethe effectivenessand efficiency of the fully consisten
DSA (FCD$A) schemeusing our solution methal for the P equatons. Numericd resuts arecom-
puted using our implemenation code ATTILAV2, asde<ribedin Wareirg, etal. (2001). Theoret
ical predictionsof the spectral radius are computd using the resuts of the Fourier analysis of the
previoussectian.

In the resuls that follow, Fourier analysis predctions and measuementsof the spedral
radius will be givenfor the FCDSAscheme.They will be compaedto those of the partially con
sistsit DSA methodof AdamsandMartin, called the Modified Four StepMethod (M4S) (Adams,
1992. In all thecompuations repated here we useAlgorithm 1 withA = B to solve Eq.7 using
GMRES Notethatsamealgorithm canbe usel to accderatethe M4S DSA equations

ATTILAVZ2 currently usesa partidly consstentDSA schremedeveloped by Wareirg, etal.
(1991), which we referto asthe WLA (Wareng, Larsen and Adams)methal. Although we have
not perfomedFourieranalysisof this methal, wewill report measuedvalues of the spectal radius
sinceWLA DSA is availablein theimplemernation code.

For isotropic scatteing, we antidpatethe fully condstentmethal will be stalie for all cell
widthsandcell aspet ratios.

In Table1 we comparethe spectral radiuspredcted by Fourier analysis to the measurd
spedral radiususing the ATTILAV2 transprt codefor a scateringratio c = 0.9999 andtotal cross
secton o; = 3.5 cm~!. Theresuts aretakulated for representdive cell widths (in termsof the
sizeof the basc elemen “box™) in orde of decleasingaspectatio «. Theaspectratio measuras
computd asthe threetimesthe ratio of the insaibed to circumscribel spheres. It is lessthanor
equa to one attainng its maximumfor atetrahedon with edgesof equd length andappraachirg
zeroasthetetratedrabecane moredistorted (Liu, 1994) The minimumaspet ratio, oy, Of the
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six tetraledrain the basicelemen is listed in the table. The measued spedral radiusis compued
onafixed(8 x 8 x 8) grid of boxes,eachdividedinto six tetrehedra for atotal of 3072cellsin the
problem. The outerprobdem dimensons arevariedto alterthe aspetratio of thetetrehedrd cells
for example,to have a basicelemer of size (2.0 cm x 1.0 cm x 5.0 cm), the prodem domainis
z € [0,16 cm|,y € [0,8 cm|,z € [0,40 cm|. Bounday conditions on the bottom, left, and bad
facesof the problem arereflecive, the othersarevacwm. Sourcesaresetto zeroandthe angular
fluxes areinitialized randanly andthe scala fluxesare normalizedto the total scdar flux in the
problem after eachiteraion. We usean S, triangula, Chebyshes-Legendre(TCL) quadratue and
a relative corvergence criterion of 10~* for the inner iterations. We usea toleranceof 10~ for
the PCGiterations on the continuousdiffusion equdions in Algorithm 1. The spedral radius is
measued astheratio of the changein the discrae L2 normbetweersucessve iterations,repated
attheendof 100iteraons. TheWLA spectal radiusis reporedafter 300 iterations.

Theresulsin Tablel indicatethatthefully consstentDSA methodis stabk andeffective
whereaghepartially corsistent methodof AdamsandMartin canbe unsablewhenthe aspetratio
is small. The measurd spectal radius is, as expected, lessthan the Fourier analysis predction
becaisethere is leakagefrom the vacuwm boundaries. The M4S andWLA methals shav a strorg
dependene on cell aspet ratio and cell thickness. The M4S methal becomesunstdle as the
aspet ratio decreaes. This is an unexpectedresut since the initial verification of the methodin
one—andtwo—dimersionsdid not indicate ary instability (Adams,1992) The spectal radius of
the WLA methodincreasesasthe aspetratio decieasesHowever, we wantto emphage thatthis
is for a scatteing ratio very closeto unity andin gener the methodis very effective whenthe
scateringratio is notsoclose to one.Nonehelessin apdicationsary degradationin effectivenes
of theWLA DSA schemas oftencompensateddy its computtiond efficiency. Thefully corsisten
methodremairs effective over therange of cell aspet ratios.

Tablel: Fourier analysis prediction and computdiondly measued spedral radius taku-
lated asa function of tetraledralcell aspet ratio.

FCDSA M4S WLA

Qmin | Az Ay Az | Measured Analysis | Measured Analysis | Measure

062 |10 10 10| 0271 0.225 0.5(6 0.528 0.6%2
05& | 20 2.0 3.0| 0.1808 0.17® 0.5632 0.585L 0.841
048 | 1.0 1.0 20| 0.2092 0.20@ 0.6138 0.64D 0.7877
0422 | 20 20 50| 0.1768 0.174 0.6704 0.708 0.8975
030 | 20 10 3.0| 02044 0.206% 0.9156 0.95% 0.8461
032 | 30 10 3.0| 0.1982 0.20( 1.0315 1.078 0.8470
02% | 20 1.0 50| 0.200 0.213 1.0&22 1113 0.9m2
010 | 20 10 80| 02024 0.20% 1.1%20 1.22% 0.927
0.1 | 80 1.0 10.0| 0.1462 0.14& 1.4320 1.47% 0.9462
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The next setof resuts areshownin Fig. 2. We compae the measurd spedral radius and
the Fourieranalysisfor thethreeDSA schemessbefore In our measurenentsthe scateringratio
is againtakento bec = 0.9999. Thistime, however, thetotal cross secton is variedlogarithmically
from 275 cm~! to 2!° cm~! andthe basicelemen sizeis fixed (2.0 cm x 1.0 cm x 8.0 cm) for
which the minimum cell aspet ratio is 0.170. The measuredspedral radius was compued on a
fixed (6 x 6 x 6) grid of boxes, eachdivided into six tetraheda, for a totd of 1296 cells. The
problem domainis fixedat z € [0,12 cm|,y € [0,6 cm|, z € [0,48 cm|. The bourdary condtions
againconsst of three reflecive facesandthreevacuun faces Againwe usethe S, TCL quadratue
andthe sameinneriteraion corvergerce criteria for the discantinuousR equdions.

1.4

12 b M4S Analysis

WLA Measured

0.8

0.6 [

Spectral Radius (unitless)

04 ¢ M4S Measured

Exact
o

02— FCDSA Analysis
FCDSA Measured

-5 -4 -3 -2 -1 0 1 2 31 4 5 6 7 8 9 10
log,o, (cm ™)

gy

Figure2: Fourieranalyss andcompugtiondly measuedspectral radiusshavn asafunc-
tion of total cross section.

We expect that the spectal radius will approachzerofor optically thick cells andthat it
shoud appoachthe value gy = 0.2542 in the limit of vanishing cell thicknessfor the TCL S,
gquadatureasusd in the transportcode(Larsen 1982 Adams,1993). This valueof g is shavn
in the figure for compaison. For thin cells, the Fourier analyss appoache the exactresut. The
measued resuls drop off from the exact result becaise of leakage asthe problen become ex-
tremelythin. Thefully consstert schemes stalde andeffective for all cell optical thickness The
M4S methodbecanesunstale for intermediak opticd thickness While boththe FCDSAandM4S
method becane increasingdy effective asthe problem becomeghick anddiffusive, the effective-
nessof the WLA metha degradeswith increasing optical thickness.

Thelastsetof resuts compaesthe computdiond effort neede to comput an & soluion
with the FCDSAmethodto thatof the WLA DSA scheme.For this problem, we solve aone-group,
steaq state,oil well logging tool prodem, a 139.7cm tall half cylinder of radius 60 cm, modelel
with anunstiuctured meshof 43,012 cells(Wareirg, 1996). Therearetwo He-3detecbrsanda unit
souice of neutonsinside the problem. The minimum aspectratio for the meshis 0.123 while the

(11)



maximumis 0.99%. The problem contdns the isotrgpically scédtering materals whoseproperties
arelistedin Table.2.

Table2: Neutran crosssectiansfor the oil well logging tool problem.

Crosssectiongcm—1)

Material Total Scattering

Limestone| 8.79672-10~! 8.70516-10~!
Iron | 1.16776-10°  9.66125- 10!
Water | 3.13459-10°  3.11519-10°
He-3 | 4.94621-10"! 1.00243-10"*

The numbe of floating point opemtions (FLOP) nealedto compue the & soluion to a
relative corvergercecriteria of 10~° in thescala fluxeson an SGI Origin 2000processomareshavn
in Table.3 for arange of TCL quadatureordes N. TheFLOPcourt is ameasuref compugtiond
effort not affected by memory acces isswes and is indepencent of datalayout or other sydem
resouceuse.

The highly scdtering, diffusive watercontaning regions of the probem brings the unac
celeatedspectal radius to approximately 0.9916. This is the measued spectal radius for the §
quadaturewhich used266.4 - 10° FLOPto corvergein 2234 iterations The FLOP countis roughly
proportional to the solution time; for comparson, the unacceleatedsolution wascompuedin 215
CPU minutes. Noting that this is only a onegroup probem (the crosssectons correspondto the
lowestneuron energygrowp in a 47 grow library), it is clearthat DSA is necessaryfor pracical
appications.

Becaus of the low minimum cell aspet ratio, the M4S DSA methodis unstdle. For
example afterthethird iteration with the S, quadaturethe spectal radiusis 1.513 andthe methal
never recovers. This observation is indepenentof quadatureorder.

Thetable shawvs thatthe WLA methal is very efficient with eachDSA steptaking a very
smallfraction of thetotal solution time. in to the FCDSA scheme In this casethe DSA algorithm
takes the majority of the compuationtime. However, becaiseit is so effective in redwing the
spedral radius— FCDSA corvergedin 13 iterations and WLA in 102 — the overall compuation
time canbe lessthanthe moreefficient WLA methodfor high enowgh quadatureorde.

5 CONCLUSIONS

We have found that our fully consstentDSA schane for DFEM disaetizaions of the &
equdions basedon an anabgousDFEM discretization of the R equdions is stabk and very ef-
fective over awide rangeof cell shages,dimensias andoptical thicknesss. For problemswith a
low aspet ratio, we found that the partially consistert M4S DSA sclemecanbe unstale on 3D
unstuctured grids while the effectivenes of the WLA DSA methoddegradesfor optically thick,
diffusive probems.

We expededthattheincreaseccomplexity of thefully consstentDSA schemecould make
it impractical for mary probems. Still, it could be more compuationally efficient thanthe par-
tially consigentWLA DSA methodunder certan circumstancesFor example,someproblemsmay
requre a high quadatureorder becaisethey contain streamiry regions while also having regions

(12)



Table3: Floating point opemtioncounts(in billions)for the oil well logging tool problem
for various §y quadrature orde's N. Thetotal neede to compue the & solutiion
is talulatedalong with the couns spentin just the DSA algorithm (perant of
totd is in parerthesed

FCDSA WLA
N | Total DSA Total DSA

4| 1114 110.0(987%) 137 1.683(12.3%)
8| 1154 110.6(958%) 415 1.634(4.08%)
12| 1206 110.6(917%) 850 1.684(1.98%)
16 | 1282 111.1(86.7%) 1445 1.684(1.17%)
20 | 1371 111.1(810%) 2198 1.684(0.77%)
24 | 1480 111.1(751%) 3109 1.684(0.5%%)

in the problemthat are diffusive. Anotherapplicationwherethe fully consstentmethodcould be
moreefficientthanthe WLA schemads in certain radidive transkr problemsof interestthathave a

scateringratio very closeto one

So far we have implemented our methals in serid codes only. Our conclusiors could
chargewhenwe extendour methodto pardlel platforms.

We plan to purste method for solving the redued Schurcompkementsystan for usein
DSA applicatiors. Solving the redwcedsysem could make the fully consstentDSA methal more
compeitive. Thereareapplicatiors other thanDSA thatrequire thefull discatinuousR solution.
In that case an efficient soluion of the redwced systemcould be usedas part of a very effective
precanditionerfor thefull sygem. We areplaming to explore this possbility.
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